
Nahle et al. 
International Journal of Food Contamination             (2022) 9:3  
https://doi.org/10.1186/s40550-022-00089-2

REVIEW

Detoxification approaches of mycotoxins: 
by microorganisms, biofilms and enzymes
Sahar Nahle1,2,3, André El Khoury3, Ioannis Savvaidis4,5, Ali Chokr1,2, Nicolas Louka3 and Ali Atoui1* 

Abstract 

Mycotoxins are generally found in food, feed, dairy products, and beverages, subsequently presenting serious human 
and animal health problems. Not surprisingly, mycotoxin contamination has been a worldwide concern for many 
research studies. In this regard, many biological, chemical, and physical approaches were investigated to reduce and/
or remove contamination from food and feed products. Biological detoxification processes seem to be the most 
promising approaches for mycotoxins removal from food. The current review details the newest progress in biologi-
cal detoxification (adsorption and metabolization) through microorganisms, their biofilms, and enzymatic degrada-
tion, finally describing the detoxification mechanism of many mycotoxins by some microorganisms. This review also 
reports the possible usage of microorganisms as mycotoxins’ binders in various food commodities, which may help 
produce mycotoxins-free food and feed.
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Introduction
Mycotoxins are secondary toxic metabolites produced 
mainly by some fungal species belonging to Aspergillus, 
Penicillium, and Fusarium genera (Greeff-Laubscher 
et al. 2020). Mycotoxin production can occur either in the 
pre-harvest stage or in the post-harvest and storage ones 
under favorable environmental conditions (Waliyar et al. 
2014). The most important conditions for fungal growth 
and mycotoxin production are temperature and water 
activity (Peraica et  al. 1999; Darwish et  al. 2014). More 
than 400 different types of mycotoxins have been iden-
tified with different levels of toxicity. Among all myco-
toxins, aflatoxins (AFs), Ochratoxin A (OTA), patulin 
(PAT), Zearalenone (ZEN), and Trichothecenes (TCT) 
have received particular attention due to their severe 
health outcomes on both humans and animals that can 
range from acute to severe and chronic intoxications in 

both humans and animals (Milićević et al. 2010; Cwalina-
Ambroziak et al. 2017; Vargas et al. 2001; El Khoury and 
Atoui 2010; El Khoury et  al. 2011; Battilani et  al. 2016; 
Nahle et  al. 2020). Exposure to mycotoxins can occur 
directly through the ingestion of contaminated food or 
indirectly through bi-products of animals consuming 
contaminated feed (Bullerman 1979). Each year myco-
toxin contamination causes severe losses worldwide at 
the level of humans, animals, agriculture, and industries 
(WHO 2016). Therefore, with such negative impacts, 
regulatory guidelines and limits for mycotoxin in foods 
and feed have been set by various countries to control 
contamination levels in the food markets. Moreover, 
researchers have been working on establishing several 
other ways to control mycotoxins in food and feed.

Over the last years, physical, chemical, and biological 
detoxification processes have been developed and they 
intended to mitigate mycotoxins in food and feed through 
destroying, modifying, or adsorbing them (El-Nezami 
et al. 1998; Karlovsky 1999; Scudamore 2005; Varga and 
Tóth 2005; Leong et al. 2006; Shetty et al. 2007; Dao and 
Dantigny 2011; El Khoury et  al. 2011; Karlovsky et  al. 
2016; Assaf et  al. 2017; Muhialdin et  al. 2020). Mainly, 
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Physical methods comprise quick-drying, UV treatment, 
and floating which help reduce mycotoxins during post-
harvest applications (Brandt and Klebaum 2009). More-
over, various organic, inorganic, or mineral mycotoxins’ 
binders were studied for their ability to adsorb myco-
toxins, (Fandohan et  al. 2005; Scudamore et  al. 2007; 
Khatibi et  al. 2014; Assaf et  al. 2017; Assaf et  al. 2018a, 
b, c; Assaf et al. 2019a; Assaf et al. 2019b). Although they 
have been shown to reduce their bioavailability, however, 
they still cannot adsorb them completely. Moreover, their 
application as a detoxification method showed many 
drawbacks such as limited implementation, insignificant 
efficacy, and low potential as a detoxification approach 
when applied to foods (Assaf et al. 2019a). On the other 
hand, chemical processes, including ammoniation, ozo-
nation, peroxidation, and others have been reported to 
destroy mycotoxins from foodstuffs (Norred et al. 1991) 
while however, failing to fulfill the criteria of a successful 
detoxification process due to the negative outcomes on 
food nutritional value, efficacy, and safety. Additionally, 
chemical methods are expensive and require complicated 
specifications to accomplish the detoxification process 
(Karlovsky 1999; Li et al. 2020). Thus, both physical and 
chemical methods are not considered as adequately effec-
tive in removing mycotoxins from food and feed.

Therefore, this issue has directed researchers to find 
alternative mycotoxin detoxification methods that would 
rather be highly efficient and safe. Recently, many stud-
ies have focused on the usage of some microorganisms 
including lactic acid bacteria (LAB), yeast, and fungi to 
remove mycotoxins from food (Abrunhosa et  al. 2002; 
Assaf et  al. 2018a, b, c; Assaf et  al. 2019a; El-Nezami 
et  al. 2004a, b, El-Nezami et  al. 1998). In addition, the 
use of microorganisms’ enzymes and their metabolites 
also showed efficiency in the mycotoxin degradation 
processes (Karlovsky 1999; Li et al. 2020). The biological 
methods used in the removal and degradation of myco-
toxins are attractive and environmentally friendly and 
therefore may offer better substitutes to the chemical 
and physical methods (Assaf et al. 2018a, b, c; Assaf et al. 
2019a).

This review aims to discuss the biological decontami-
nation of mycotoxins and to review the mechanisms of 
detoxification by yeasts and bacteria, in addition to bac-
terial biofilms and their enzymes. Moreover, this review 
presents the contribution of biological detoxification 
methods to food safety and consumers’ health.

Biological detoxification of mycotoxins using 
microorganisms
The biological detoxification of mycotoxins is defined 
as the usage of microorganisms, as well as their micro-
bial enzymes and metabolites for mycotoxins binding 

and potential degradation (Muhialdin et  al. 2020). The 
microorganisms implicated in biological degradation 
should follow certain standards such as being safe, non-
pathogenic, possess mycotoxins degrading ability, pertain 
activity during packing, do not form improper odors or 
taste, and preserve the nutrient value of food (Varga and 
Tóth 2005). The benefits of the biological detoxification 
process include its easiness, cost-effectiveness, applica-
bility over broad range of target mycotoxins, efficacy in 
a wide range of fluid and foodstuffs, and its insignificant 
effects against nutrients naturally found in food (Varga 
and Tóth 2005; Muhialdin et al. 2020).

Biological and organic binders
Various biological assays using either biological binders 
(bacteria, biofilm, and yeast) or organic binders (chitin, 
shrimp shells) have been established to remove different 
mycotoxins from laboratory liquid media or commer-
cial beverages by adsorption mechanism (Hatab et  al. 
2012; Taheur et  al. 2017; Chlebicz and Śliżewska 2020). 
Briefly, adsorption is an interaction mechanism between 
a special structure on the surface of the binder and the 
mycotoxin through non-covalent bonds such as Van der 
Waals interactions, that reduces the bioavailability of the 
mycotoxin found in the intended food commodity. On 
the other hand, biosorption is the use of biological bind-
ers for the detoxification process (Kolosova and Stroka 
2011). The biosorption pathway is quick and direct in 
sequestering mycotoxins as compared to the biodeg-
radation pathway. However, the toxins might be easily 
released back and this depends on the stability of the 
complex formed between the bacterial surface and the 
toxins (Solis-Cruz et al. 2019).

Bacteria
Many studies have reported that bacteria are useful bio-
logical agents for mycotoxin detoxification. Bacteria 
can remove mycotoxin by biosorption or biodegrada-
tion mechanisms. A summary of the literature reporting 
bacterial strains for mycotoxins detoxification in various 
media is presented in Table  1. The removal percentage 
of many mycotoxins involving various bacterial strains 
reached a high efficiency of up to 94%.

It was demonstrated that the use of Generally Recog-
nized as Safe (GRAS) probiotic bacteria such as LAB is 
very promising in mycotoxins detoxification (Abdelmo-
tilib et al. 2018; El-Nezami et al. 1998; Fuchs et al. 2008; 
Assaf et  al. 2019a; Assaf et  al. 2018a, b, c; Ben Taheur 
et  al. 2019; Wang et  al. 2018a, b). Haskard et  al. (2001) 
revealed that several LAB has been established to detox-
ify  AFB1 which is the most potent human carcinogen. 
Haskard and his team have assessed the ability of five 
Lactobacillus strains: L. rhamnosus GG, L. rhamnosus 
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LC705, L. acidophilus, L. gasseri, and L. casei to remove 
 AFB1 from liquid media and have demonstrated that the 
probiotic strains L. rhamnosus GG and L. rhamnosus 
LC705 were highly effective in detoxifying of up to 80% 
 AFB1 (Haskard et al. 2001). Additionally, El-Nezami et al. 
(2002) have shown that L. rhamnosus GG was able to 
remove up to 70% of ZEN from liquid media. Fuchs et al. 
(2008) showed that Bifidobacterium animalis strain VM 
12 was able to remove approximately 80% of PAT and L. 
acidophilus strain (VM 20) reduced the OTA levels by 
more than 90% among all tested strains.

Other strains of bacteria have been investigated for 
their binding capability to mycotoxins. El Khoury et  al. 
(2017) have investigated the ability of actinobacteria, 
which are found in soil habitat and comprise the larg-
est bacterial genera “Streptomyces”, to bind and detoxify 
OTA. El Khoury et al. (2017) have established that seven 
different strains of actinobacteria were able to bind OTA 
to different extents. Among the tested strains, AT8 strain 
was remarkably able to detoxify OTA to up to 52.61%. 
Also, Verheecke et al. (2014) have found that the mutual 
interaction between Streptomyces spp. (27 strains) and 
Aspergillus flavus (NRRL 62477) can reduce the level of 
 AFB1 and  AFB2 in vitro to up to 73%. In 2018, Wang et al. 
(2018a, b) have shown that Lysinibacillus sp. strain, iso-
lated from chicken large intestine digesta, demonstrated 
high ability in removing ZEN. Additionally, Taheur et al. 
(2017) have proved that Lactobacillus kefiri, Kazach-
stania servazzii, and Acetobacter syzygii were able to 
remove up to 100% of  AFB1.

Mycotoxins binding in several studies was reported 
to be rapid, and the binding percentages were generally 
affected by many factors such as incubation time, type of 
bacteria, bacterial concentration, pH, type of medium, 
and temperature (El-Nezami et  al. 2004a). The use of 
bacterial adsorbents in beverages presents several advan-
tages over chemical and physical detoxification methods. 
The bacterial detoxification assay is considered more 
effective and highly specific, especially since the binding 
affinity of mycotoxins varies not only among different 
species but also among different strains within the same 
species. Furthermore, the use of several probiotic bacte-
ria has made the bacterial detoxification process safer.

Yeasts
Studies showed that probiotic yeasts or products con-
taining yeast cell walls can remove mycotoxins from 
beverages (Pizzolitto et  al. 2012). A summary of the lit-
erature in which yeast strains were used for mycotox-
ins detoxification is presented in Table  2. Generally, it 
is well established that S. cerevisiae is extensively used 
in biotechnology processes such as baking and distill-
ing industries. Some studies shown that S. cerevisiae 
can remove OTA from microbiological media and other 
beverages (Piotrowska and Masek 2015). Other studies 
have demonstrated that S. cerevisiae is most effective in 
 AFB1 binding (Corassin et al. 2013). Corassin et al. (2013) 
have demonstrated that heat-killed S. cerevisiae cells have 
the potential to reduce  AFM1 levels in milk. Other yeast 
strains such as Kluyveromyces Lactis and Kazachstania 

Table 1 Mycotoxins removal percentage of different bacterial strains

Strain Mycotoxins Sample Removal (%) References

Lactobacillus acidophilus VM20 OTA Liquid medium 97 (Fuchs et al. 2008)

Lactobacillus bulgaricus OTA PBS 94 (Varga et al. 2005)

Lactobacillus plantarum PAT Apple juice 91.2 (Zoghi et al. 2017)

Lactobacillus rhamnosus LC705 AFB1 PBS 87.8 (Haskard et al. 2001)

Lactobacillus rhamnosus GG AFB1 PBS 84.1 (Haskard et al. 2001)

Lactobacillus kefiri KFLM3 OTA Milk 81 (Taheur et al. 2017)

Lactobacillus rhamnosus 6224 PAT Apple juice 80.4 (Hatab et al. 2012)

Bifidobacterium animalis VM 13 PAT Liquid medium 80 (Fuchs et al. 2008)

Lactobacillus rhamnosus 1088 AFB1 PBS 79 (Chlebicz and Śliżewska 2020)

Lactobacillus rhamnosus GG ZEN PBS 70 (El-Nezami et al. 2002)

Enterococcus faecium 21,605 PAT Apple juice 64.5 (Hatab et al. 2012)

Lactobacillus rhamnosus GG AFM1 PBS 63.1 (Assaf et al. 2017)

Lactobacillus rhamnosus GG biofilm AFM1 Milk 60.7 (Assaf et al. 2019a)

Actinobacteria AT8 OTA PBS 52.6 (El Khoury et al. 2017)

Lactobacillus plantarum 13 M5 PAT Apple juice 43.8 (Wei et al. 2020)

Lactobacillus plantarum VM 37 OTA Liquid medium 43 (Fuchs et al. 2008)

Lactobacillus plantarum VM 37 PAT Liquid medium 39 (Fuchs et al. 2008)
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servazzii KFGY7 also showed removal ability of mycotox-
ins from milk reaching to up to 69.14%.

Chitin and shrimp shells
Both polysaccharides and peptidoglycans are found in 
the cell wall of different microorganisms and have been 
shown to be involved in mycotoxin binding (Kim et  al. 
2017). The amino sugar N-acetyl-D-glucosamine (Glc-
NAc) is the key component of the cell wall of microor-
ganisms including fungi, bacteria, and yeast (Chen et al. 
2010), and this has been mainly responsible for the 
detoxification of mycotoxins (Assaf et  al. 2018a, b, c). 
This sugar is also found in the exoskeleton of crustaceans 
in the form of a polymer known as “chitin”, specifically in 
shrimp shells (Xu et al. 2008; Iqbal et al. 2017) that con-
tain primarily 30–40% of chitin (Venugopal 2016). In that 
sense, attention has been given to chitinous polymers 
and shrimp shells and their ability to remove mycotox-
ins. Assaf et al. (2018a, b, c) have evaluated the ability of 
chitin (as a natural biopolymer) and ground shrimp shells 
(which contain 30–40% of chitin) to detoxify  AFM1. They 
showed that chitin and shrimp shells were able to bind 
 AFM1 in milk at varied binding percentages in the range 
of 14.29 and 94.74%. Yearly, up to 8 million tons of crab, 
shrimp, and lobster shells are wasted worldwide, (Yan 
and Chen 2015) thus, valorisation of these wastes, to be 
used as potential biosorbents in mycotoxin detoxification 
would contribute to decreasing food waste and eliminat-
ing toxic effects on humans. They would also be of great 
interest as an added benefit to the food industry.

Mechanisms of action involved through microbial binding
To date, there are two theories by which LAB elimi-
nates toxins: one through physical adsorption and the 
other through biodegradation of mycotoxins. Research-
ers have conducted several detoxification experiments 
to test which theory is more adequate. Experiments 
with thermally inactivated bacteria provoked higher 
detoxification of mycotoxins as compared to activated 
cells. Studies showed that the binding of mycotoxins by 

microorganisms is a rapid process, which forms a revers-
ible complex between the toxin and the bacterial surface 
without altering the mycotoxins’ structure (Bueno et  al. 
2007). Shetty and Jespersen’s investigations revealed that 
the detoxification process is related to a physical union 
between the mycotoxins and the bacterial cell compo-
nents, instead of covalent binding or biodegradation by 
bacterial metabolism (Shetty and Jespersen 2006). Yian-
nikouris et al. (2006) reported that hydrogen bonds and 
Van der Waals interactions may be implicated in this 
binding mechanism. On the other hand, according to 
Hernandez-Mendoza et  al. (2009), the differences in 
the mycotoxins’ binding ability of various Lactobacillus 
strains could be explained by the differences in the cell 
wall components specifically teichoic acid and pepti-
doglycan contents. Different structures in the cell wall of 
microorganisms are responsible for the mycotoxin bind-
ing capacity. Cell walls comprise carbohydrates (pep-
tidoglycan, mannose, and glucan), proteins, and lipids, 
which may offer different binding sites (Wang et  al. 
2019a, b). However, there are arguments among different 
researches on the specific cell wall components impli-
cated in the binding processes, such as glucogalactans 
and β-glucans (Taheur et  al. 2017), mannoproteins 
(Caridi et  al. 2012), β- glucans and mannans (Pereyra 
et al. 2015). Therefore, in the interaction of bacterial cells 
and mycotoxins, it appears that various binding mecha-
nisms may be implicated involving non-covalent bond-
ing, hydrophobic interactions, ionic interactions, or 
hydrogen bonds, (Huwig et al. 2001; Ringot et al. 2007).

The cell wall portion of S. cerevisiae is mostly com-
posed of polysaccharides with an inner layer of β-D-
glucans chains, which constitute 50 to 60% of the wall’s 
dry weight (Jouany et  al. 2005). Jouany et  al. (2005) 
have shown that β-D-glucans are the components 
mainly responsible for the complexation of ZEN. Also, 
they showed that the chemical interaction is more of an 
adsorption type than binding, where both weak hydro-
gen bonds and Van der Waals interactions are involved 
in this adsorption. Moreover, it has been demonstrated 

Table 2 Mycotoxins removal percentage of different yeast strains

Strain Mycotoxins Sample Removal (%) References

S. cerevisiae AFM1 UHT skim milk 90.3 (Corassin et al. 2013)

S. cerevisiae RC008 OTA YPD broth 82.3 (Armando et al. 2012)

S. cerevisiae AFM1 PBS 78.7 (Abdelmotilib et al. 2018)

S. cerevisiae YS3 PAT Apple juice 72.6 (Yue et al. 2011)

Kluyveromyces Lactis AFM1 PBS 69.1 (Abdelmotilib et al. 2018)

Kazachstania servazzii KFGY7 OTA Milk 62 (Taheur et al. 2017)

S. cerevisiae 0068 AFB1 PBS 46.7 (Chlebicz and Śliżewska 2020)
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that the binding process of OTA to the surface of living 
or dead yeast cells, is achieved, in general, by adsorp-
tion mechanisms (Bejaoul et al. 2004). These research-
ers have concluded that the yeast cell wall and its 
charge are involved in the adsorption process (Bejaoul 
et  al. 2004). These observations were similar to those 
of Piotrowska (2014) who found that bacteria, with 
partially removed cell walls, had less ability to bind 
OTA, as compared to the bacteria with intact cell walls 
(Piotrowska 2014), highlighting, therefore, the impor-
tance of the cell wall in the adsorption mechanisms 
(Piotrowska 2014).

The properties of the bacterial cell surface play a 
vital role in the binding mechanism. In another study, 
involving Escherichia coli, a Gram-negative bacterium, 
it was established that it was incapable of removing 
mycotoxins due to its moderately hydrophilic nature 
and its present surface components (lipopolysaccha-
rides) (Pierides et  al. 2000). On the other hand, LAB 
bacteria having hydrophobic sites on their cell surface 
were confirmed to have the ability to bind OTA (El-
Nezami et  al. 1998). Assaf et  al. (2019a) hypothesized 
that the biofilm matrix may be involved in  AFM1 bind-
ing rather than the bacterial cells themselves. Addi-
tionally, this study observed that washing the biofilm 
had released some fraction of the weakly bound  AFM1. 
This confirms that binding is reversible due to the dis-
ruption of some electrostatic bonds as hydrogen bonds 
and Van der Waals interactions (Hernandez-Mendoza 
et al. 2009).

Moreover, higher mycotoxins’ elimination was shown 
by inactivated bacterial cells. For example, Haskard 
et al. (2001) found that high temperature leads to pro-
tein denaturation in the bacterial cell wall, and this 
results in the generation of pores, that facilitate further 
aflatoxins’ adsorption and mycotoxins elimination.

Additionally, the same authors suggested that protein 
denaturation might increase the hydrophobic nature 
of the surface or form Maillard reaction products and 
such alterations allow aflatoxins to bind to the bacterial 
cell wall and plasmatic membrane components, which 
were masked when the cell wall was intact (Haskard 
et  al. 2001). Chlebicz and Śliżewska (2020) recently 
have shown that treatment of yeasts by heat and acid-
ity improved significantly OTA detoxification by up to 
75% from liquid medium compared to untreated cells. 
Expecting that both polysaccharides and peptidogly-
cans are affected by heat and acid treatments, these 
researchers postulated that acidic treatments could 
disturb polysaccharides, by releasing monomers that 
are broken down into aldehydes, which could lead to 
more adsorption sites than viable cells (Chlebicz and 
Śliżewska 2020).

Detoxification approaches of mycotoxins by biofilms
Bacteria exist in nature under two forms: either as freely 
swimming planktonic bacteria, or as sessile in attached 
colonies of microorganisms forming a biofilm. Thus, 
the biofilm may be considered as “a three-dimensional 
structure of sessile microorganisms that are irreversibly 
attached to biotic or abiotic surfaces, embedded in self-
formed extracellular polymeric substances (EPS) (Lewan-
dowski and Boltz, 2010).

In the last decades, biofilm formation has been impli-
cated in many industrial and domestic domains (Roger 
et al. 2008). Salas-Jara et al. (2016) have studied the abil-
ity of some strains of LAB to form a biofilm and Lebeer 
et al. (2007) have shown the ability of L. rhamnosus GG 
to form biofilm on polystyrene support. Recently, a new 
method was developed for the detoxification of milk 
from  AFM1 by using L. rhamnosus GG biofilm (Assaf 
et  al. 2019a). The biofilm was formed on polystyrene 
petri plates and in polyethylene tubes. The detoxification 
process was carried out using the biofilm formed on day 
3, which is considered a highly attached biofilm and an 
efficient binding agent. The percentages of bound  AFM1 
by L. rhamnosus GG biofilm reached to up to 60.7%. 
Moreover, the quality of milk after  AFM1 detoxification 
had no significant changes in the protein content, but 
some changes in fat and total dry matter contents ratio. 
Additionally, Assaf et al. (2019a) have studied the stabil-
ity of the  AFM1-biofilm complex using different  AFM1 
concentrations. The study has shown that the binding 
was reversible and a portion of the bound  AFM1 was 
released after successive washings. To date, this tech-
nique is a modern technique that relies on the removal of 
mycotoxins by a biofilm, making it of great challenge and 
appeal, especially to those that are interested in remov-
ing mycotoxins from foods. However, the use of biofilms 
as a technique of detoxification of mycotoxins is still in 
its early stages and additional studies that might be of a 
potential usefulness to food industries should be con-
ducted. Hence, on a general note, using biofilms as bio-
logical adsorbents for mycotoxins may be considered as 
a solid base for the progress of biological detoxification 
methods.

Detoxification approaches of mycotoxins by microbial 
enzymes
Enzymatic detoxification is one of the most promis-
ing methods of mycotoxins control, especially that it is 
devoid of some significant disadvantages that chemical 
methods employ such as chemical contamination of raw 
materials, nutrient loss, time-consuming and expensive 
(Wang et al. 2019a, b). A wide range of microorganisms 
including bacteria, molds, and yeasts are involved in 
the enzymatic detoxification of mycotoxins (Hathout 



Page 6 of 14Nahle et al. International Journal of Food Contamination             (2022) 9:3 

and Aly 2014). Generally, microbial enzymes are able to 
metabolize, destroy or inactivate mycotoxins into less 
or nontoxic metabolites (Lyagin and Efremenko 2019). 
Degradation is a process by which most of the micro-
organisms use during their life activities to degrade 
certain substances converting them into less or even 
non-toxic products. During the degradation process, 
the vital active molecules secreted by microorganisms 
are enzymes (Guan et al. 2021).

Most of the scientific studies to date are dedicated to 
enzymatic degradation for detoxifying the most notable 
mycotoxins, including AF, OTA, ZEN, TCT, and PAT 
(Tang et  al. 2013; Loi et  al. 2018; Zhang et  al. 2020). 
Several microbial enzymes from bacteria, yeast, and 
fungi that are capable of performing various modifica-
tions or transformations of mycotoxins have been iso-
lated and investigated (Ben Taheur et al. 2019).

Examples of microbial enzymes, reported in the lit-
erature, involved in mycotoxins degradation are pre-
sented in Table  3. Studies have shown that some 
enzymes from yeasts have important characteristics 
that enable them to transform toxins into less toxic 
ones (Schatzmayr et  al. 2006; Halász et  al. 2009). A 
number of enzymes belonging to Aspergillus species are 
found to be involved in aflatoxin degradation. Further-
more, Aspergillus niger, an isolate from feed samples, 
was shown to biodegrade  AFB1 (Zhang et  al. 2014). 
Other fungal strains that may contribute to the detoxi-
fication of aflatoxins, by secreting oxidative enzymes 
such as laccase and manganese peroxidase have been 
reported (Alberts et  al. 2009). Interestingly, manga-
nese peroxidase extracted from Phanerochaete sordida 
was responsible for eliminating 86% of  AFB1 in  vitro, 
increasing to 100% with successive additions of the 
enzyme (Wang et  al. 2011). Moreover, laccase enzyme 
purified from Trametes versicolor was able to remove 
67% of  AFB1 (Zeinvand-Lorestania et al. 2015).

Recently, Zhang et al. (2018) showed that the intracel-
lular enzymes of Y. lipolytica Y-2 were able to degrade 
OTA more rapidly than its viable cells (Zhang et  al. 
2018). Also, Chang et al. (2015) have reported that car-
boxypeptidase, an enzyme purified from B. amylolique-
faciens ASAG1 was capable of reducing OTA by 72%.

Additionally, the enzymatic extracts from Rhodoc-
occus erythropolis, N. corynebacterioides DSM 20151, 
and M. fluoranthenivorans sp. nov. DSM 44556 T have 
revealed more than 90% degradation capability of 
 AFB1 (Hackbart et al. 2014). Recently, Shu et al. (2018) 
established that heat-treated supernatant from Bacil-
lus velezensis DY3108 was able to degrade 94.7% of 
 AFB1 into less toxic metabolites. Recently, it was found 
that Bacillus pumilus was able to degrade 88% of  AFB1 
(Sangi et al. 2018).

The mycotoxins detoxification efficacy of different 
enzymes produced as part of the yeasts/fungi metabolic 
activity are summarized in Table 3.

In one of the first studies to be conducted on microbial 
enzymes, manganese peroxidase can serve as a good can-
didate for detoxifying various types of mycotoxins (Wang 
et al. 2011). This peroxidase, purified from different lig-
nocellulose-degrading fungi such as Irpex lacteus, Phan-
erochaete chrysosporium, Ceriporiopsis subvermispora, 
and Nematoloma frowardii, can degrade  AFB1, ZEN, and 
other mycotoxins (Tang et al. 2013). Loi et al. (2018) have 
described the ability of laccase purified from Pleurotus 
eryngii to simultaneously degrade  AFB1 and ZEN by 86% 
and 100% respectively.

Interestingly, Bacillus pumilus ES-21 was able to 
degrade 95.7% of ZEN into 1-(3,5-dihydroxyphenyl)-
6-hydroxy-l-undecen-l0-one (Wang et al. 2017). Overall, 
three kinds of enzymes have been identified to degrade 
ZEN: Lactonase (Bi et al. 2018; Wang et al. 2018a, b), per-
oxidase (Tang et  al. 2013), and laccase (Loi et  al. 2018). 
Lactonase ZHD101 was mostly proposed for its high 
efficiency in ZEN degrading ability, found in S. cerevisiae 
(Takahashi-Ando et  al. 2002) and L. reuteri (Yang et  al. 
2017). Even though lactonase has high degrading abil-
ity, however, it is not highly thermostable which restricts 
its applications (Zhang et al. 2020). Recently, Wang et al. 
(2018a, b) identified a lactonohydrolase enzyme, Zhd518, 
which exhibited high degrading activity against ZEN. The 
same authors reported that Zhd518 could be an excel-
lent candidate for ZEN detoxifying due to its high spe-
cific activity against ZEN and its derivatives (Wang et al. 
2018a, b). Recently, Zhang et  al. (2020) have identified 
an effective ZEN-degrading lactonase from Gliocladium 
roseum, named ZENG for the first time (Zhang et  al. 
2020). This recombinant enzyme has great activity and 
stability at a pH of 7.0., characterized by its great detoxi-
fication ability of ZEN and its derivatives, α-zearalenol 
(α-ZOL), and α-zearalanol (α-ZAL) (Zhang et al. 2020).

Mechanisms of action involved in the enzymatic 
transformation of mycotoxins
Many biochemical transformation reactions of myco-
toxins by microorganisms and their enzymes have been 
described such as acetylation, glucosylation, ring cleav-
age, hydrolysis, sulfation, deamination, and decarboxy-
lation (Li et  al. 2020). Some of the biotransformation 
reactions of mycotoxins by some microbial enzymes are 
shown in Table 4.

Application of biological detoxification processes 
in the food industry
Many microorganisms have been proposed for use as 
detoxifying agents in food and feed, but only few have 
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been further investigated for uses in the food indus-
try. Many factors should be considered while selecting 
a binder for mycotoxins, particularly in the food sector, 
including non-pathogenicity, specificity, effective seques-
tering and the absence of adverse effects.

Assaf et  al. (2018a, b, c) have proposed a novel 
machine that may be employed in the detoxification 
of mycotoxin from liquid beverages. This machine 
has probiotic LAB biofilms fixed to a customized car-
tridge; accordingly, it allows liquid food to pass through 
these adsorbents which results in detoxified liquid. The 
prototype of the invested detoxifying machine is pre-
sented in Fig. 1. Many aspects, such as the flow rate of 
the pump, the number of cartridges utilized, the kind 
of biological adsorbents are proposed to be explored 
throughout the development of this machine prototype. 
This machine has the potential to be a promising appli-
cation in liquid food purification, particularly because 
the creation of biofilms is cost-effective, however, it is 
also very important to assess the effect of this treat-
ment on the organoleptic characteristics of the bever-
ages after detoxification process.

Lately, Foroughi et al. (2018) have suggested a method 
to detoxify  AFM1-contaminated milk by immobilizing 
yeast such as S. cerevisiae on perlite support. The results 
revealed a high significant removal of  AFM1 from milk 

samples where the highest detoxification percentage 
reached was 81.3% without altering the physicochemical 
properties of milk. Further optimization of the bio-filters 
may subsequently lead to different practical detoxifica-
tion applications of various mycotoxins from dairy prod-
ucts and beverages.

In a previous study, Hatab et al. (2012) showed that L. 
rhamnosus 6224 and Enterococcus faecium 21,605 were 
able to remove 80.4 and 64.5% of patulin (PAT) from 
apple juice, respectively. These researchers have proved 
that LAB could be used as a novel and promising adsor-
bent to bind PAT without altering the quality of the juice.

Yue et al. (2011) have shown that inactivated S. cerevi-
siae YS3 powder was able to remove up to 72.61% of PAT 
from apple juice, and additionally, there was no negative 
impact on the quality of apple juice, based on the quality 
parameters measured, such as degrees Brix, total sugar, 
titratable acidity, color value, and clarity. This study sug-
gests that the inactivated S. cerevisiae YS3 powder could 
be a hopeful binder of PAT in apple juice, especially since 
yeast has low cost, high biomass properties, and can be 
simply separated from apple juice (Yue et al. 2011).

Although many articles on mycotoxin elimination 
by adsorption and transformation have been pub-
lished, their applicability in the food industry has been 
restricted. This might be attributed to a lack of knowledge 

Table 4 Examples of enzymes and their microorganism origin that are involved in the degradation of mycotoxins

Microbial Origin Name of enzyme 
Or
Type of enzyme

Mycotoxins Degradation (%) References

Aspergillus niger MUM 03.58 Carboxypeptidase OTA 99 (Abrunhosa et al. 2006)

Bacillus amyloliquefaciens ASAG1 Carboxypeptidase OTA 72 (Chang et al. 2015)

Aspergillus tubingensis M036 – OTA 97.5 (Cho et al. 2016)

Aspergillus tubingensis M074 – OTA 91.3 (Cho et al. 2016)

Aspergillus niger Ochratoxinase OTA ND (Dobritzsch et al. 2014)

Yarrowia lipolytica Y-2 Carboxypeptidases OTA ND (Zhang et al. 2018)

Phanerochaete sordida Manganese peroxidase AFB1 86 (Wang et al. 2011)

Trametes versicolor Laccase AFB1 67 (Zeinvand-Lorestania et al. 2015)

Pleurotus eryngii Laccase AFB1 86 (Loi et al. 2018)

Pleurotus eryngii Laccase ZEN 100 (Loi et al. 2018)

Escherichia coli Lactonohydrolase Zhd518 ZEN ND (Wang et al. 2018b)

lignocellulose-degrading fungi Manganese Peroxidase ZEN 34.0 (Tang et al. 2013)

lignocellulose-degrading fungi Manganese Peroxidase AFB1 84.9 (Tang et al. 2013)

Rhodococcus erythropolis – AFB1 90 (Hackbart et al. 2014)

Bacillus velezensis DY3108 – AFB1 94.7 (Alberts et al. 2009)

Bacillus pumilus – AFB1 88 (Alberts et al. 2009)

Bacillus pumilus ES-21 – ZEN 95.7 (Wang et al. 2017)

Gliocladium roseum ZENG ZEN 60 (Zhang et al. 2020)

Aspergillus niger – AFB1 23.6 (Zhang et al. 2014)

Peniophora sp. SCC0152 – AFB1 40.45 (Alberts et al. 2009)
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regarding transformation processes, the toxicity of trans-
formation products, and the influence of transformation 
reactions on the nutritional content of food and feed. 
Degraded products have not been recognized in certain 
circumstances and so cannot be employed in industrial 
operations.

Recently, Zhang et  al. (2020) have identified a potent 
enzyme, ZENG, that is efficient in detoxifying up to 60% 
of ZEN and its toxic derivatives. However, most enzymes 
do not meet the requirements of industrial applications 
due to their low ability to withstand high temperatures 
(Atalah et  al. 2019). So thermostability is an important 
characteristic of industrial enzymes and to meet the 
industrial demands, efforts should also seek to provide 
highly thermostable enzymes, which can reduce the cost 
of production, develop its efficiency, and help in lowering 
microbial contamination in industrial approaches.

Although, an enzymatic catalysis is a promising 
approach that can be used to detoxify mycotoxins (Ben 
Taheur et al. 2019). However, not all mycotoxins’ modi-
fications and transformations can lead to detoxification 
products. For example, Hahn et  al. (2015) showed that 
the α- and/or β-ZOL, the reduced products of ZEN, have 
similar estrogenic activity compared to ZEN. Karabulut 
et al. (2014) deduced that aflatoxicol, the reduced prod-
uct of  AFB1, has a similar ability to form an exo-epoxide 
analog that binds to DNA.

Enzymatic detoxification, in our opinion, might be a 
viable technique for the majority of mycotoxins if applied 
properly. The efficacy of the biodegradation process can 
be validated by using two criteria: (i) discovering and 

identifying the transformed products, and (ii) performing 
toxicity assays on the resultant intermediate metabolites 
and products. Meanwhile, because the enzyme’s genetic 
sequence is known, molecular engineers might improve 
the enzyme’s selectivity and catalytic performance by 
making changes to the active region. All of these per-
ceptions should be taken into account in order to aid in 
the mitigation of mycotoxins. Biological degradation of 
mycotoxins is a promising method that can be further 
developed by focusing on the isolation of specific micro-
organisms, optimizing their growth, and creating condi-
tions that favor massive production of enzymes.

Conclusion
Mycotoxins have received much attention due to their 
severe impact on human and animal health. Their 
detoxification has been always the goal of research. 
While biological detoxification of mycotoxins has been 
widely studied, little is still known about the potential 
applications in the food, feed, and beverages industries. 
So practically, scientists should focus on the potential 
use of microorganisms in the detoxification of myco-
toxin mixtures from food and beverages. In addition, it 
is of utmost importance to analyze the physicochemi-
cal profile, sensory properties, and organoleptic char-
acteristics of the juices and food after detoxification of 
mycotoxins. Further, it is necessary to isolate and select 
suitable enzymes and microorganisms for efficient 
detoxification and to analyze the enzymatic properties 
and their catalytic processes in food and beverages. 
In brief, what makes a good binder is its adsorption 

Fig. 1 Prototype machine for detoxification of mycotoxins from beverages using biological adsorbents
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capacity, specificity, safety, and stability. Therefore, after 
the future development of these promising approaches, 
enzymes and microorganisms can be used as food and 
feed additives or as detoxifying agents during food pro-
cessing, while preserving the nutritional and organo-
leptic quality of food commodities and beverages.
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